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Introduction 
This paper is concerned with the problem of allocating a unit 
capacity resource to multiple users within a pre-defined time 
period. The resource is indivisible, so that at most one user 
can use it at each time instance. However, different users 
may use it at different times. The users have independent, 
se@sh preferences for when and for how long they are allo- 
cated this resource. Thus, they value different resource ac- 
cess durations differently, and they value different time slots 
differently. We seek an optimal allocation schedule for this 
resource. 

This problem arises in many institutional settings where, 
e.g., different departments, agencies, or personal, compete 
for a single resource. We are particulary motivated by the 
problem of scheduling NASA's Deep Space Satelite Net- 
work (DSN) among different users within NASA. Access 
to DSN is needed for transmitting data from various space 
missions to Earth. Each mission has different needs for DSN 
time, depending on satelite and planetary orbits. Typically, 
the DSN is over-subscribed, in that not all missions will be 
allocated as much time as they want. This leads to various 
inefficiencies - missions spend much time and resource lob- 
bying for their time, often exagerating their needs. NASA, 
on the other hand, would like to make optimal use of this 
resource, ensuring that the good for NASA is maximized. 
This raises the thorny problem of how to measure the utility 
to NASA of each allocation. 

In the typical case, it is difficult for the central agency, 
NASA in our case, to assess the value of each interval to 
each user - this is really only known to the users who un- 
derskmd their needs. Thus, our prgblem is more precisely 
formulated as follows: find an allocation schedule for the 
resource that maximizes the sum of users preferences, when 
the preference values are private information of the users. 
We bypass this problem by making the assumptions that one 
can assign money to customers. This assumption is reason- 
able; a committee is usually in charge of deciding the prior- 
ity of each mission competing for access to the DSN within 
a time period while scheduling. Instead, we can assume that 
the committee assigns a budget to each mission. We then 
assume that customers express preferences by attaching a 
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monetary value to each allocation of an interval, and that the 
utility to NASA is linear in the sum of user values. 

Given the users' valuations over different time alloca- 
tions, the problem is a challenging optimization scheduling. 
However, as we noted, these valuations are private informa- 
tion known only to the users, and a-priori we have no reason 

missions tend to exagerate these values in order to obtain 
more DSN time. This problem is reminiscent of similar 
competitive allocation problems. Many such problems are 
solved using auction-based mechanisms. In our approach 
we adopt the VCG mechanism for auction clearing and pay- 
ment determination to give customers (bidders) no incentive 
to lie. This paper is focusing on the scheduling optimiza- 
tion aspect of our problem and, therefore, we omit further 
elaboration on the game theory aspect of our solution. 

In summary, our problem is to optimally schedule re- 
quests over single resource that are, each, specified over 
a window with flexible duration augmented by preference' 
values. The problem is over-subcribed and, therefore, some 
requests will be rejected. To the best of our knowledge, pref- 
erence elicitation for scheduling with this wide range of fea- 
tures has not been addressed in the literature. 

The paper is organized as follows. In Section 2 we review 
the relevant related background. In Section 3 we formally 
define the OCS problem. In Section 4 we briefly discssus 
a VCG-like mechanism for OCS. In Section 5 we describe 
simplified classes of OCS introducing various relaxations of 
requirements and their solvers. Preliminary empirical results 
are presented in Section 6. We conclude in Section 7. 

Background 
Our problem has two central aspects represent by inducing 
the agents to reveal their true preferences and then solving 
the associated optimal scheduling problem. Previous work 
roughly falls into these two categories. We tackle the first as- 
pect by adopting the Vickery-Clarke-Groves (VCG) mech- 
anism that is incentive compatible in terms of bidding true 
values (expressing true preferences in our case). We choose 
to focus on the second aspect in this paper. 

The literature on scheduling contains vast numbers of 
tractable cases for scheduling problems with one optimiza- 
tion criteria. The work most reiated to our type of optimiza- 
tion problem is that on STPPs. In (?) it was shown that if 
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the preference functions over le, - e71 are restricted to be 
piecewise linear and convex, the STPP can be solved by for- 
mulating an appropriate linear program (LP), rendering its 
solution time polynomial. It is important to note that in an 
STPP, all events must be assigned a positive time. If we view 
events as task start and end times, this means that in order 
to formulate a scheduling problem as an STPP, we must first 
resolve all resource conflicts either by rejecting certain tasks 
or by ordering tasks. Thus, in practice the input consists of 
a set of ordered tasks, all of which must be allocated some 
time. Cases where there are too many tasks or sets of tasks 
have trivially infeasible constraints cannot be resolved by 
the existing techniques. 

Definition 1 An STPP consists of a set of events E ,  a set of 
simple temporal constraints of the form a I lei - ejl 5 b 
where e,, ej E E,  and a set of real-valued preferencefunc- 
tions on some event distances: f (lei, e3 I). One event, eo, is 
designated as the origin (i.e., eo = 0), and constraints in- 
volving e, and eo are interpreted as unary bounds on when 
ei can occur. The problem is to find a feasible assignment to 
e;(# eo) i.e., an assignment satisfying the constraints mi- 
mizing x,,,,, f (lei - ej I )  that also satisfies all constraints. 

The Optimal Competitive Scheduling Problem 
for the Deep Space Network 

We begin with a resource R, a time horizon [O..h], and a set 
of customers (bidders) J .  Let A be a set of activities (re- 
quests). Let SA be the start time, DA be the duration, and 
EA be the end time of activity A E A. Associated with A 
are the following constraints: SA + DA = EA, All activities 
A also share a single unary resource R (i.e. jobs can’t over- 
lap). We may also associate other constraints among collec- 
tions of activities. The most elementary such constraints are 
absolute start and end time: 0 I  SA^^ 5 SA I  SA,^ I h, 
and 0 I eAlb 5 EA 5 eAvb 5 h. Similarly, tasks can 
have minimum and maximum durations: 0 I dAlb 5 DA 5 
d ~ , ~  I: h. Another simple form of constraint are Simple 
Temporal Constraints (?) of the form a I TA - TB I b, 
where TA E {SA;  EA} and TB E {SB ,  EB}. which can 
enforce activity orderings and activity endpoint separations. 

Customers express preferences over when individual ac- 
tivities take place, how much activities are separated, and 
how long activities last. For example, a common preference 
is that longer duration activities are better. Another com- 
mon preference is for activities to start at some time t. In 
the DSN setting, the first of these preferences is the most 
common. Thus, customers’ preferences are functions of the 
form ~A(SA, DA).  

Briefly, we indicate how the problem is stated as game 
theory. The auction protocol is a single sealed-bid auc- 
tion; players/customers bid, winners and prices are deter- 
mined, and winners determine the schedule that will be ex- 
ecuted. Thus, the winning bids must collectively define fea- 
sible schedules. 

The Optimal Competitive Scheduling Problem (OCS) is 
to maximize the sum of the value of customers’ true pref- 
erences over scheduies given h e  constrainis and bids by 
choosing a subset of bids A’ to grant (satisfy) and choosing 

the values of SA,  EA,  DAVA E A’ satisfying the relevant 
constraints. 

Problem Complexity 
OCS is an extension of l / r , ; p , ;  d,/ E, w,U, (3); that is, 
scheduling tasks with release times, due dates, and dura- 
tion constraints on a unary resource in order to minimize 
the weighted penalty of missed jobs (alternatively maxi- 
mize value of completed jobs) with duration-dependent val- 
ues for tasks, additional opportunities for positive value 
(start time preferences), and additional constraints (simple 
temporal constraints on timepoints). Karp has shown that 
l / r Z ; p t ;  d,l E, w,U, is NP-complete; thus, OCS must be 
NP-hard. (IS THIS CORRECT JEREMY?) 

Tractable Cases: OCS Problem Relaxations 
We showed earlier that the OCS problem is NP-hard. Thus, 
in general, we would expect to use branch-and-bound search 
to find an optimal allocation. In this paper, we identify and 
solve tractable cases of OCS. In the future, we would expect 
tn use such t.ramh!e cases to pmd~ice hounds for the general 
case. 

We restrict the temporal constraints to be tasks ordering 
constraints (i.e., constraints on the relation between the start 
times of different tasks). For simplicity, we will continue to 
refer to these constraints using the same notation previously 
usedfor simple temporal constraints: ( a  I ITA - TBI I b). 
We will also impose limits on the form V A ( D A )  can take. 
We first assume every function V A  (DA is a set of k~ piece- 

interval [xk-l, xk] and f;, (xk) = fk:’(xk). Furthermore 
we assume each VA(DA)  is convex. 

wise linear functions, { f;,}, where fD, L is defined over an 

Case 1: Total Ordering with No Task Rejection 
\ 

 HIS CASE IS TOO LONG RELATIVE TO ITS IMPOR- 
TANCE AND TO BE SHRUNK LATER IN SUMMARY, IT \, ’ 
IS: OneShotLP. Formulate the problem as an STPP and use 
the STPP2LP to find a solution via LP-Solve. Simple and 
fast but suitable only for FlexMinZero with Nocontainment 
problems (rejection of a request is represented by granting ib 
a duration of zero requests are ordered by their window start 
times when mapping into STPP/LP which proved to be an 
optimal ordering when no containment exists) 

Given the above restricted version of OCS, suppose that 
we have predetermined the relative order of all conflicting 
tasks. Then, we can use the LP formulation of the STPP 
to solve for the task durations. The LP contains a vari- 
able representing the start, duration and end of each task 
(SA,  DA,  EA).  We also introduce a new variable VA. The 
form of the LP is as follows: To build the LP formulation of 
the STPP, we have: 

maximize U A  
subject to: forall A 
S A + D A = E A  
S A l b  5 S A  5 SAub’ 

eAl b 5 EA 5 eA,b 9 

SAlb 5 O A  5 dAub’ 
a 5 ITA - TBI 5 b 



We refer the reader to (?) for the proof that the solutions 
to this LP are the optimal solutions to the STPP. 

Extending the STPP The requirement that all conflicting 
tasks be ordered is not particularly natural in our case. More- 
over, even then, if there are too many tasks, the system of 
linear constraints in the LP may be trivially infeasible. How- 
ever, if it just so happens that all activities that could overlap 
on the resource are ordered, and all tasks allow for the pos- 
sibility of zero duration then the STPP is trivially feasible, 
and “maximal” (no subset of the STPP has a better optimal 
solution). 

The requirement that we be able to reduce the duration of 
a task to zero allows the LP algorithm to reject tasks without 
conducting combinatorial search. However, we must still or- 
der the tasks. We now identify a restricted set of problems 
for which the best possible ordering can be found in plyno- 
mial time. From the above discussion it  follows that for such 
problems the optimization problem is polynomial (assuming 

Definition 2 Two requested tasks A ,  B are a containment 
pair ifeither  SA,^ 5 S B ~ ~  and e B l b  < e A , b )  or  SA[^ < S B ~ ~  

Theorem 1 Given an OCS problem whose preferences are 
piecewise linear convexfunctions over DA, and whose met- 
ric temporal constraints are trivially feasible and limited to 
time windows and task ordering. Ifno pair of tasks A,  B is a 
containment pair, then the ordering according to  SA^^ (and 
eAub in the case of ties) induces an STPP whose optimal so- 
lution is maximal over the STPPs induced by any other task 
ordering. 

Proving this theorem will be accomplished by proving 
an equivalent theorem introduced after the following defi- 
nitions. 
Definition 3 The “natural order” of requests is the order- 
ing induced by the start times of the associated visibility 
windows, with ties broken by the window end times. 

Definition 4 In any (grounded) schedule, a two granted re- 
quests are a “mismatched pair” iff the order of their allo- 
cated times differsfrom the natural order. 
Definition 5 In any (grounded) schedule, a two granted re- 
quests are “adjacent” $there is ED other request with allo- 
cated time between theirs. 
Theorem 2 I f  R is a set of requested tasks with no con- 
tainment pairs, R has an optimal schedule T with no mis- 
matched pairs. 

To prove this theorem, it is enough to prove that given 
any schedule S with mismatched pairs, we can derive an 
equivalent (of the same value) schedule with no mismatched 
pairs. As a result, any optimal schedule can be transformed 
into an optimal schedule with no mismatched pairs. 

First a lemma about swapping adjacent mismatched pairs, 
then an algorithm for deriving equivalent schedules with no 
mismatched pairs. 
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Figure 1: Swapping Adjacent Mismatched Pairs in 
Grounded Schedule. 

Lemma 1 Let S be any (grounded) schedule for R. Let T A  
and TC be any rwo requesrs, am’ L‘er A and C be intervuis 
corresponding to their allocated times in S .  If A and C 
are adjacent and mismatched, then there is an equivalent 
schedule T with A and C adjacent and not mismatched. 

Proof (see illustration in figurel): Let I be the smallest 
interval containing the time allocated to both A and C. I is 
in the intersection of the visibility window of both requests 
satisfied by A and C,  therefore the time span allocated to 
each of A and C may occur anywhere in I .  Because A 
and C are adjacent, there is no other request with allocated 
time in I to interfere with repositioning A and C. Keeping 
their sizes the same (which makes the resultant schedule T 
equivalent to S), we may cause A and C to exchange places 
within I (keeping the rest of the schedule unchanged). 0 

Algorithm: Let S be any optimal schedule for R. 
Let k be the number of task allocations in S. Make k - 1 
traversals of the timeline, left-to-right: whenever two 
adjacent allocations appear that are mismatched, swap them 
as described in the lemma. After the k - 1 traversals, 
there are (according the the theory of bubble sort!), no 
remaining mismatched pairs. Since S was optimal, so is the 
bubble-sorted resultant schedule. 0 

This completes the proof for Theorem1 . 

Now suppose we have a containment pair with A con- 
taining B. If we assume tasks are interruptible we can 
split A into A’ and A” such that the optimal ordering is 
A’ < B < A” according to the previous rule. Initially, 
this may not appear to be an equivallent problem since our 
preference for the duration of A” depends on the duration of 
A’. However, we can use the sum of their durations directly 
in the objective function for the induced LP. 

It is tempting to think that we can find the optimal or- 
dering for a containment pair without intermptibility. Either 
ordering prunes duration choices for A but neither prune du- 
ration choices for B. It is trivial to determine which prunes 



more duration choices for A (we can construct cases for 
which either ordering prunes more choices). One might 
think that the optimal ordering is that which prunes fewer 
duration choices for A. Unfortunately, not only is this not 
true, but we can demonstrate that containment pairs actually 
break the "optimal" ordering for non-containment pairs of 
tasks. The following simple example (also shown in Figure 
??) shows this: 
Task A: S A , ,  = 0 ,  eA,, = 5 ,  dAUb = 2, VA(DA) = 2 d ~  
Task B: sgLb = 1, egUb = 6, dgub = 2, ~ l g ( D g )  = dg  
Task C: scLb = 0,  ecUb = 1, dc,, = 1, v c ( D c )  = lOdc 
Task D: S D ~ ,  = 2, eD,, = 3, do_, = 1, W D ( D D )  = lOdD 
Task E: S E ~ ,  = 5 ,  eEu, = 6, dEUb = 1, W E ( D E )  = 1OdE 

The idea is that highest paying tasks (C, D,and E )  should 
be placed in the schedule and given their maximum duration. 
This leaves 2 gaps to be filled by lower paying tasks ( A  and 
B). The gaps are as follows: [l 21 and [3 51. If A < B, A 
gets assigned [l 21 and B gets assigned [3 51. The value is 
2+2=4. If B < A, B gets assigned 1 slot [l 21 and A gets 

the optimal ordering for A and B,  contradicting the optimal 
ordering when no containment pairs are present. 

..-.,. ScQigfied 2 ~ ! n t ~  [3 5j. The v a j ~ p  is !+e5 Thus, _R < -4 is 

Case 2: Fixed Duration with Task Rejection 

Overlap Boundness implies apolynomial run time (exponen- 
tial only in the 'bound'). 
Simple Solver For each time point on the horizon, con- 
sider all possible allocations. Pruning is done similarly to 
the next algorithm. 
PrefixLengthBased Partition Solver Based on a concep- 
tual tree. Nodes at level i represents the ith request in the 
partial schedule starting from the node down the branch to 
this node. At each node, the requests are split into 2 sets: 
'closed' (past their last opportunity) and 'open' (still active). 
For each node, the first child is the request that ends the ear- 
liest among the 'open' and un-sused requests. The remain- 
ing children are all 'open' and un-used requests that 'may' 
start any time between the end of the node and the end of 
the first child. Pruning of a partial schedule is based on the 
combination of three parameters: 
TimeBased Partition Solver Partition the time horizon 
based on 'latest start time' of the requests. For each par- 
tition (bucket), consider all possible extensions to all partial 
schedules received from previous partition. Prune similarly 
to 3a. Adjust the 'closed', 'active', and 'open' sets. A re- 
quest is 'closed' if its past its last opportunity, 'active' if it  
could start within the current partition (bucket), and 'open' 
otherwise. 
Notes on the three solvers for Fixed Durations The Sim- 
ple and PrefixLengthBased Partion are implemented with 
similar domination rules but the later seems to outperform 
the former for problems that have many competing requests. 
The PrefixLengthBased Partion has a wider (fatter) but shal- 
lower (shorter) search tree than the.  

The domination rules of the PrefixLengthBased Partition 

are applied to subschedules that are of the same size in terms 
of number of grants while the domination rules of the Simple 
are applied to subschedules that are of the, roughly, same 
extension. 

The dominations rules of PrefixLengthBased could be en- 
hanced by taking into consideration when the difference in 
component sets has a value that doesn't exceed the differ- 
ence in value of 2 subschedules, comparing a subschedule 
with prefixes of other subschedules to allow for 'fair' com- 
parisons in terms of extensions, and comparing a subsched- 
ule with dummy zeros added, when needed before attaching 
an actual grant, with one-level prefix (one resulting from ig- 
noring the last grant only) of other subschedules to allow for 
elimination prior to adding remaining siblings 

Case 3: Flexible Duration with Task Rejection 

If the flexible duration is chosen in a discrete manner, then 
the solvers for fixed duration may be extended to handle all 
the discrete possibilities of the flexible durations. This adds 

ration. A more interesting case is when the flexible duration 
is over continuous domain and, therefore, this what we will 
explore next. 
Dual Graph Based Solver Build the Dual graph where 
the nodes are each pair of requests with overlapping win- 
dows. The domain for each node is a set of 5 values indi- 
cating if any of the component requests is to be granted and, 
if both granted, in which order. The values selected for the 
nodes under any single scenario has to be consistent. (ob- 
vious?) For each scenario, which represents a selection of 
subtasks to grant in some specific ordering, an LP problem 
is formed and LP-Solve is called to find the optimal alloca- 
tion. Filtering is done prior to forming the LP problem if 
the scenario is found to be no better than the best currently 
found scenario. Semi-simple and slow but suitable for least 
restricted problems. Dealing with OvrlpBounded problems 
implies having a bounded induced width graphs which re- 
sults in complexity reduction. (how much reduction?) 
Partition Based Solver Divide the time horizon into par- 
titions based on 'earliest start time' of the requests. For each 
partition (bucket), let 'fresh' be the set of requests that initi- 
ated this partition (ones that their earliest start time is at the 
start of this partition). 'closed' is the set of requests whose 
latest start time precedes this prtitiofi. 'xtive' is the set of 
requests that could start at this partition. For each partial 
schedule from the previous partition, let 'flow' be the set of 
requests in this schedule that ends beyond the start of current 
partition. For each partial schedule from the previous par- 
tition, for each possible selection of a subset from 'fresh', 
for each possible insertion of this subset in 'flow', form an 
LP problem (selected requests and ordering), include max- 
imum left shift of grants in the objective function (the end 
time of the last request is multiplied by epsilon, the inverse 
of the minimum bid (?), and added to the objective func- 
tion), extract needed information from LP solution. Prune 
accordingly using the concept of Independent Prefix (more 
on this soon). This solver is Complex and Slow but suit- 
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generateProblem(h,w,d,v,p,n) 

for n tasks 
Choose window size w, u.a.r. from [l..w] 
Choose start time u.a.r. from [l..h - w,] 
while task window contains another task window 

while task window contained by another task window 

Choose duration d ,  u.a.r. from [l.. min(d, w,)] 
Choose maximum bid b, u.a.r. from [ l . . ~ ]  
Choose number of pieces of preference u.a.r. from [l..p] 
for each piece of preference 

Shrink window; update w, 

Enlarge window; update w, 

#d* is remaining duration w,, b* is remaining bid height b, 
Choose piece duration d,  u.a.r, from [l..d*]; update d* 
Choose bid height b, u.a.r. from [l..b*]; update b* 
Add preference function piece of duration d ,  up to bid b, 

I 

Empirical Results 
In this section we describe some preliminary empirical re- 
sults on the Case 1 simplification applied to randomly gen- 
erated instances of these problems. 

Random Problems 
The instances are generated as follows. Let h be the schedul- 
ing horizon. Let w be the maximum window for any task, 
d be the maximum duration of any task, v be the maximum 
bid for any task, and p be the maximum number of pieces 
of the preference function, also inputs. First, the task start 
time and maximum duration are selected uniformly from the 
given range. These characteristics are then modified to en- 
sure that no pair of tasks is a containment pair. Finally, the 
maximum bid of the task is generated, a random number of 
pieces of the preference function is selected, and the prefer- 
ence function is generated. 

Preliminary Empirical Results 
We present the results of preliminary empirical tests de- 
signed to show the growth in time to solve the LP as a func- 
tion of the problem '. Due to the relative simpiicity of the 
temporal constraints on tasks, the principal contributors to 
the LP are the number of tasks and the number of pieces in 
tasks' preference functions. Figure ?? shows timing results 
for problems with h = 4000, w = 20, d = 15 and v = 40. 
We vary the number of tasks n from 200 to 1600 by 200, 
and the maximum number of pieces of the bid p from 1 to 
6. Growth in problem complexity is sub-linear in p ,  as ex- 
pected, and appears polynomial in the number of tasks. The 
CPU times shown are in seconds; we average over 5 ran- 
domly generated problems. Timing is only for solving the 

LP, which was done by lpsolve, a public domain LP solver. 
More results could be added from CASE 2 

Conclusions and Future Work 
We describe the OCS problem for Deep Space Network. 
This problem consists of activities with time windows and 
flexible durations, simple temporal constraints, and pref- 
erences over a combination of start time and duration of 
tasks. We have shown that a VCG mechanism exists for 
this problem, which (to our knowledge) is the first mecha- 
nism for an auction on a mixture of divisible and indivisible 
goods. We have identified a class of OCS problems with a 
tractable second-price mechanism: activities with time win- 
dows, flexible duration, ordering constraints, convex, piece- 
wise linear preferences, no containment pairs, and for which 
duration of zero is feasible. The tractability result is a novel 
extension of the theory of STPPs to tractably handle task 
ordering and task rejection. 

Obviously a study of the general case of OCS for the 
DSN is worthwhile. Task containment, metric temporal con- 
- ctraintc .. I.-_-I, rnlllti-capzcity . - 1 - - -_ res~urces and choices over resources 
will generally lead to NP-hard problems. We are investi- 
gating options for incorporating the solving of tractable sub- 
cases in a complete solver, in a manner similar to that de- 
scribed in (?). The tractable cases for STPP described in 
this paper provide methods for bounding above the value of 
schedules by relaxing the STPP constraints; they can then 
be used both as inference mechanisms and as the bases of 
heuristics. Proving the value of the bounds and subsequently 
experimenting with those bounds inside a complete solver 
are on our agenda. 

In our formulation, we implicitly assumed that the facil- 
ity owner (NASA) was the auctioneer and thus had no bid. 
However, we could generally introduce new bidders to rep- 
resent the facility owner's criteria on schedules. For exam- 
ple, maximizing utilization could be a preference: NASA 
could be given a budget for this, and express preferences 
over it, thereby influencing the auction. In general, we be- 
lieve the tractability results will extend to multiple prefer- 
ences over a set of activities. 

The tractable cases of OCS for DSN restrict the nature 
of the preference functions to piecewise linear convex func- 
tions of the duration, VA(DA)  and forces preferences to ex- 
tend to DA = 0. If more general preference functions 
VA(DA,  SA) are allowed, care must be taken to ensure that 
rejected tasks derive no value, Gi fmnally, VA(O, SA) = 0. 
Furthermore, metric temporal constraints on rejected tasks 
should not be enforced. The STPP framework may not be 
appropriate in this setting; we are investigating other for- 
malisms in search of new tractable algorithms. 

'Investigations of solution quality, task rejection and so on are 
pending . 


